Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Clin Monit Comput ; 2022 Aug 02.
Article in English | MEDLINE | ID: covidwho-2226963

ABSTRACT

Novel technologies allow continuous wireless monitoring systems (CWMS) to measure vital signs and these systems might be favorable compared to intermittent monitoring regarding improving outcomes. However, device safety needs to be validated because uncertain evidence challenges the clinical implementation of CWMS. This review investigates the frequency of device-related adverse events in patients monitored with CWMS in general hospital wards. Systematic literature searches were conducted in PubMed and Embase. We included trials of adult patients in general hospital wards monitored with CWMS. Our primary outcome was the frequency of unanticipated serious adverse device effects (USADEs). Secondary outcomes were adverse device effects (ADEs) and serious adverse device effects (SADE). Data were extracted from eligible studies and descriptive statistics were applied to analyze the data. Seven studies were eligible for inclusion with a total of 1485 patients monitored by CWMS. Of these patients, 54 patients experienced ADEs (3.6%, 95% CI 2.8-4.7%) and no USADEs or SADEs were reported (0%, 95% CI 0-0.31%). The studies of the SensiumVitals® patch, the iThermonitor, and the ViSi Mobile® device reported 28 (9%), 25 (5%), and 1 (3%) ADEs, respectively. No ADEs were reported using the HealthPatch, WARD 24/7 system, or Coviden Alarm Management. Current evidence suggests that CWMS are safe to use but systematic reporting of all adverse device effects is warranted.

2.
Dan Med J ; 69(6)2022 May 16.
Article in English | MEDLINE | ID: covidwho-1877237

ABSTRACT

INTRODUCTION: During the first wave of the COVID-19 pandemic, visits to hospitals were prohibited. Therefore, new ways of communicating with relatives about and with patients were needed. This study aimed to explore experiences made with video calls in an adult ICU. METHODS: This study employed semi-structured group interviews conducted with six registered nurses from the ICU in a large hospital in Denmark who used video calls during the lockdown. Interviews were transcribed verbatim and analysed using systematic text condensation. RESULTS: The analyses indicated that video calls were a useful alternative to physical meetings. The advantages of video calls were that relatives had risk-free access to the ICU and the patient's treatment, whereas patients gained a window into their home, and nurses used less planning time than physical visit. Finally, patients were less distracted by video calls than by visits. The challenges identified with video calls were difficulties for nurses to care for relatives, ethical aspects and technical issues. CONCLUSIONS: Video calls were an effective tool for communication during the COVID-19 lockdown, presenting a number of advantages and challenges compared with in-person visits or telephone calls. By identifying and overcoming these challenges, video calls may become a beneficial supplement to in-person visits or telephone calls. FUNDING: none. TRIAL REGISTRATION: Approved by the Danish Data Protection Agency (P-2020-931).


Subject(s)
COVID-19 , Adult , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control , Humans , Intensive Care Units , Pandemics/prevention & control , Qualitative Research
3.
N Engl J Med ; 386(21): 1986-1997, 2022 05 26.
Article in English | MEDLINE | ID: covidwho-1864788

ABSTRACT

BACKGROUND: Perioperative bleeding is common in patients undergoing noncardiac surgery. Tranexamic acid is an antifibrinolytic drug that may safely decrease such bleeding. METHODS: We conducted a trial involving patients undergoing noncardiac surgery. Patients were randomly assigned to receive tranexamic acid (1-g intravenous bolus) or placebo at the start and end of surgery (reported here) and, with the use of a partial factorial design, a hypotension-avoidance or hypertension-avoidance strategy (not reported here). The primary efficacy outcome was life-threatening bleeding, major bleeding, or bleeding into a critical organ (composite bleeding outcome) at 30 days. The primary safety outcome was myocardial injury after noncardiac surgery, nonhemorrhagic stroke, peripheral arterial thrombosis, or symptomatic proximal venous thromboembolism (composite cardiovascular outcome) at 30 days. To establish the noninferiority of tranexamic acid to placebo for the composite cardiovascular outcome, the upper boundary of the one-sided 97.5% confidence interval for the hazard ratio had to be below 1.125, and the one-sided P value had to be less than 0.025. RESULTS: A total of 9535 patients underwent randomization. A composite bleeding outcome event occurred in 433 of 4757 patients (9.1%) in the tranexamic acid group and in 561 of 4778 patients (11.7%) in the placebo group (hazard ratio, 0.76; 95% confidence interval [CI], 0.67 to 0.87; absolute difference, -2.6 percentage points; 95% CI, -3.8 to -1.4; two-sided P<0.001 for superiority). A composite cardiovascular outcome event occurred in 649 of 4581 patients (14.2%) in the tranexamic acid group and in 639 of 4601 patients (13.9%) in the placebo group (hazard ratio, 1.02; 95% CI, 0.92 to 1.14; upper boundary of the one-sided 97.5% CI, 1.14; absolute difference, 0.3 percentage points; 95% CI, -1.1 to 1.7; one-sided P = 0.04 for noninferiority). CONCLUSIONS: Among patients undergoing noncardiac surgery, the incidence of the composite bleeding outcome was significantly lower with tranexamic acid than with placebo. Although the between-group difference in the composite cardiovascular outcome was small, the noninferiority of tranexamic acid was not established. (Funded by the Canadian Institutes of Health Research and others; POISE-3 ClinicalTrials.gov number, NCT03505723.).


Subject(s)
Antifibrinolytic Agents , Tranexamic Acid , Antifibrinolytic Agents/adverse effects , Antifibrinolytic Agents/therapeutic use , Canada , Hemorrhage/etiology , Hemorrhage/prevention & control , Humans , Surgical Procedures, Operative , Thrombosis/chemically induced , Thrombosis/drug therapy , Tranexamic Acid/adverse effects , Tranexamic Acid/therapeutic use
4.
Exp Physiol ; 107(7): 665-673, 2022 07.
Article in English | MEDLINE | ID: covidwho-1807292

ABSTRACT

NEW FINDINGS: What is the topic of this review? Lactate is considered an important substrate for mitochondria in the muscles, heart and brain during exercise and is the main gluconeogenetic precursor in the liver and kidneys. In this light, we review the (patho)physiology of lactate metabolism in sepsis and coronavirus disease 2019 (COVID-19). What advances does it highlight? Elevated blood lactate is strongly associated with mortality in septic patients. Lactate seems unrelated to tissue hypoxia but is likely to reflect mitochondrial dysfunction and high adrenergic stimulation. Patients with severe COVID-19 exhibit near-normal blood lactate, indicating preserved mitochondrial function, despite a systemic hyperinflammatory state similar to sepsis. ABSTRACT: In critically ill patients, elevated plasma lactate is often interpreted as a sign of organ hypoperfusion and/or tissue hypoxia. This view on lactate is likely to have been influenced by the pioneering exercise physiologists around 1920. August Krogh identified an oxygen deficit at the onset of exercise that was later related to an oxygen 'debt' and lactate accumulation by A. V. Hill. Lactate is considered to be the main gluconeogenetic precursor in the liver and kidneys during submaximal exercise, but hepatic elimination is attenuated by splanchnic vasoconstriction during high-intensity exercise, causing an exponential increase in blood lactate. With the development of stable isotope tracers, lactate has become established as an important energy source for muscle, brain and heart tissue, where it is used for mitochondrial respiration. Plasma lactate > 4 mM is strongly associated with mortality in septic shock, with no direct link between lactate release and tissue hypoxia. Herein, we provide evidence for mitochondrial dysfunction and adrenergic stimulation as explanations for the sepsis-induced hyperlactataemia. Despite profound hypoxaemia and intense work of breathing, patients with severe coronavirus disease 2019 (COVID-19) rarely exhibit hyperlactataemia (> 2.5 mM), while presenting a systemic hyperinflammatory state much like sepsis. However, lactate dehydrogenase, which controls the formation of lactate, is markedly elevated in plasma and strongly associated with mortality in severe COVID-19. We briefly review the potential mechanisms of the lactate dehydrogenase elevation in COVID-19 and its relationship to lactate metabolism based on mechanisms established in contracting skeletal muscle and the acute respiratory distress syndrome.


Subject(s)
COVID-19 , Sepsis , Adrenergic Agents/metabolism , Humans , Hypoxia , Lactate Dehydrogenases/metabolism , Lactic Acid/metabolism , Muscle, Skeletal/metabolism , Oxygen/metabolism , Sepsis/complications , Sepsis/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL